MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice.
نویسندگان
چکیده
The spikelet is a unique inflorescence structure of grass. The molecular mechanism that controls the development of the spikelet remains unclear. In this study, we identified a rice (Oryza sativa) spikelet mutant, multi-floret spikelet1 (mfs1), that showed delayed transformation of spikelet meristems to floral meristems, which resulted in an extra hull-like organ and an elongated rachilla. In addition, the sterile lemma was homeotically converted to the rudimentary glume and the body of the palea was degenerated in mfs1. These results suggest that the MULTI-FLORET SPIKELET1 (MFS1) gene plays an important role in the regulation of spikelet meristem determinacy and floral organ identity. MFS1 belongs to an unknown function clade in the APETALA2/ethylene-responsive factor (AP2/ERF) family. The MFS1-green fluorescent protein fusion protein is localized in the nucleus. MFS1 messenger RNA is expressed in various tissues, especially in the spikelet and floral meristems. Furthermore, our findings suggest that MFS1 positively regulates the expression of LONG STERILE LEMMA and the INDETERMINATE SPIKELET1 (IDS1)-like genes SUPERNUMERARY BRACT and OsIDS1.
منابع مشابه
Running head : MFS 1 regulates spikelet development in rice Corresponding
The spikelet is a unique inflorescence structure of grass. The molecular mechanism that controls the development of spikelet remains unclear. In this study, we identified a rice spikelet mutant, multi-floret spikelet1 (mfs1), which showed delayed transformation of spikelet meristems to floral meristems, this resulted in an extra hull-like organ and an elongated rachilla. In addition, the steril...
متن کاملFRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.
Inflorescences of grass species have a distinct morphology in which florets are grouped in compact branches called spikelets. Although many studies have shown that the molecular and genetic mechanisms that control floret organ formation are conserved between monocots and dicots, little is known about the genetic pathway leading to spikelet formation. In the frizzy panicle (fzp) mutant of rice, ...
متن کاملThe rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem.
Regulating the transition of meristem identity is a critical step in reproductive development. After the shoot apical meristem (SAM) acquires inflorescence meristem identity, it goes through a sequential transition to second- and higher-order meristems that can eventually give rise to floral organs. Despite ample information on the molecular mechanisms that control the transition from SAM to in...
متن کاملOsMADS1 Represses microRNA172 in Elongation of Palea/Lemma Development in Rice
Specification of floral organ identity is critical for the establishment of floral morphology and inflorescence architecture. Although multiple genes are involved in the regulation of floral organogenesis, our understanding of the underlying regulating network is still fragmentary. MADs-box genes are principle members in the ABCDE model that characterized floral organs. OsMADS1 specifies the de...
متن کاملFloral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1.
Grass flowers are organized on small branches known as spikelets. In maize, the spikelet meristem is determinate, producing one floral meristem and then converting into a second floral meristem. The APETALA2 (AP2)-like gene indeterminate spikelet1 (ids1) is required for the timely conversion of the spikelet meristem into the floral meristem. Ectopic expression of ids1 in the tassel, resulting f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 162 2 شماره
صفحات -
تاریخ انتشار 2013